If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2+50a-50=0
a = 5; b = 50; c = -50;
Δ = b2-4ac
Δ = 502-4·5·(-50)
Δ = 3500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3500}=\sqrt{100*35}=\sqrt{100}*\sqrt{35}=10\sqrt{35}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{35}}{2*5}=\frac{-50-10\sqrt{35}}{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{35}}{2*5}=\frac{-50+10\sqrt{35}}{10} $
| 11/2c=99/20 | | 3x+12x=-x+5 | | 475.72=679.6(1+d) | | 5+25=20x+8 | | (j+8)2=50 | | K=2300*x+40 | | x^2-20x+160=0 | | 7(b-5)=30 | | 5h+7=-23 | | 0.2(5x-5)+3x=-9(0.3x+4) | | 2x–7=3x–11 | | n/2*4n=79 | | 2x²-14x+16=0 | | 6x-(6+)=26 | | −8−x=−3(2x−4)+3x | | (X+2)(x-4)=x^2-10 | | 14-2a=24 | | 10u-8u=4 | | 20925/s=12/7 | | 20925/s=12/4 | | 20961/s=12/4 | | 6.5k+3−5.5k=7 | | 32=2x^2+12x | | x^2+100x-9600=0 | | 2n-7=1-6n | | 3(x-1)+7=4 | | x^2+50x-4800=0 | | z|8+5=1 | | x³+5x-60=0 | | 4t=18. | | x^2+180x-4800=0 | | 32-4p=-6 |